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Abstract: The seven pillars ofthe analytie hierarehy proeess (AHP) are presented. These 
include: (1) ratio seales derived from reeiproeal paired eomparisons; (2) paired 
eomparisons and the psyehophysieal origin ofthe fundamental seale used to 
make the eomparisons; (3) eonditions for sensitivity ofthe eigenveetor to 
ehanges injudgements; (4) homogeneity and c1ustering to extend the seale 
from 1-9 to 1-00; (5) additive synthesis of priorities, leading to a veetor of 
multi-linear forms as applied within the deeision strueture of a hierarehy or the 
more general fe'edbaek network to reduee multi-dimensional measurements to 
a uni-dimensional ratio seale; (6) allowing rank preservation (ideal mode) or 
allowing rank reversal (distributive mode); and (7) group deeision making 
using a mathematieally justifiable way for synthesising individualjudgements 
whieh allows the eonstruetion of a eardinal group deeision eompatible with 
individual preferenees. These properties ofthe AHP give it both theoretieal 
support and broad applieation. 

1. INTRODUCTION 

The analytic hierarchy process (AHP) provides the objective mathematics 
to process the inescapably subjective and personal preferences of an 
individual or a group in making adecision. With the AHP and its 
generalisation, the analytic network process (ANP), one constructs 
hierarchies or feedback networks that describe the decision environment 
structure. The decision maker then makes judgements or performs 
measurements on pairs of elements with respect to a controlling element to 
derive ratio scales that are then synthesised throughout the structure to select 
the best alternative. 
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Fundamentally, the AHP works by developing priorities for alternatives 
and the criteria used to judge the alternatives. Criteria are selected by a 
decision maker (irrelevant criteria are those that are not included in the 
hierarchy). Selected criteria may be measured on different scales, such as 
weight and length, or may even be intangible for which no scales yet exist. 
Measurements on different scales, of course, cannot be directly combined. 
First, priorities are derived for the criteria in terms of their importance to 
achieve the goal, then priorities are derived for the performance of the 
alternatives on each criterion. These priorities are derived based on pairwise 
assessments using judgemcnt or ratios of measurements from a scale if one 
exists. The process of prioritisation solves the problem of having to deal 
with different types of scales, by interpreting their significance to the values 
of the user or users. Finally, a weighting and adding process is used to 
obtain overall priorities for the alternatives as to how they contribute to the 
goal. This weighting and adding paralleis what one would have done 
arithmetically prior to the AHP to combine alternatives measured under 
several criteria having the same scale to obtain an overall result (a scale that 
is often common to several criteria is money). With the AHP a 
multidimensional scaling problem is thus transformed to a uni-dimensional 
scaling problem. 

The AHP can be viewcd as a formal method for rational and explicit 
decision making. It possesses the seven fundamental properties, below. 
Subsequent sections examine each in greater detail. 

Normalised ratio seales are central to the generation and synthesis of 
priorities, whether in the AHP or in any multicriteria method that needs to 
integrate existing ratio scale measurements with its own derived scales. 

Reeiproeal paired eomparisons are used to express judgements 
semantically, and to automatically link them to a numerical and fundamental 
scale of absolute numbers (derived from stimulus-response relations). The 
principal right eigenvector of priorities is then derived; the eigenvector 
shows the dominance of cach element with respect to the other elements. 
Inconsistency in judgement is allowed and a measure for it is provided 
which can direct the decision maker in both improving judgement and 
arriving at a better understanding of the problem. The AHP has at least three 
modes for arriving at a ranking of the alternatives: relative, which ranks a 
few alternatives by comparing them in pairs (particularly useful in new and 
exploratory decisions), absolute, which rates an unlimited number of 
alternatives one at a time on intensity scales constructed separately for each 
covering criterion (particularly useful in decisions where there is 
considerable knowledge to judge the relative importance of the intensities), 
and benehmarking, which ranks alternatives by including a known 
alternative in the group and comparing the others against it. 
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Sensitivity of the principal right eigenvector to perturbation in 
judgements limits the number of elements in eaeh set of eomparisons to a 
few and requires that they be homogeneous. 

Homogeneity and clustering are used to extend the fundamental seale 
gradually from cluster to adjaeent cluster, eventually enlarging the se ale 
from 1-9 to 1-00. 

Synthesis that can be extended to dependence and feedback is applied to 
the derived ratio scales to create a uni-dimensional ratio scale for 
representing the overall outcome. Synthesis of the scales derived in the 
decision structure can only be made to yield correct outcomes on known 
scales by additive weighting. 

Rank preservation and reversal ean be shown to oceur without adding or 
deleting criteria, such as by simply introducing enough copies of an 
alternative. This leaves no doubt that rank reversal is as intrinsic to decision 
making as rank preservation also iso 

Group judgements must be integrated one at a time carefully and 
mathematically, taking into consideration, when desired, the experience, 
knowledge, and power of each person involved in the decision. The AHP's 
cardinal ratio sc ale preferences allow one the possibility of eonstructing a 
soeial utility function-an impossibility when using ordinal preferences. To 
deal with a large group requires the use of questionnaires and statistical 
procedures for large sampies. 

2. RATIO SCALES 

A ratio is the relative value or quotient alb of two quantities a and b of 
the same kind; it is called commensurate if it is a rational number, otherwise 
it is incommensurate. A statement ofthe equality oftwo ratios alb and c!d is 
called proportionality. A ratio scale is a set of numbers that is invariant 
under a similarity transformation (multiplication by a positive constant). 
The constant cancels when the ratio of any two numbers is fonned. Either 
pounds or kilograms can be used to measure weight, but the ratio of the 
weight of two objects is the same for both scales. An extension of this idea 
is that the weights of an entire set of objects, wh ether in pounds or in 
kilograms, can be standardised to read the same by nonnalising. In general 
ifthe readings from a ratio scale are aWj*, i=I, ... ,n, the standard fonn is given 
by wj=aw,*law,*=wj*lwj* as a result of which we have LWj=l, and the W" 
i=l, ... ,n, are said to be normalised. We no longer need to speeify whether 
weight for example is given in pounds or in kilograms or in another kind of 
unit. The weights (2.21, 4.42) in pounds and (1, 2) in kilograms, are both 
given by (1/3, 2/3) in the standard ratio sc ale fonn. 
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The relative ratio scale derived from a pairwise comparison reciprocal 
matrix of judgements is derived by solving: 

(2.1) 

with aji=1/aij or aijüji=l (the reciprocal property), aij>O (thus A is known as a 
positive matrix) whose solution, known as the principal right eigenvector, is 
normalised. A relative ratio scale does not need a unit of measurement. 

When aip;k = aik, the matrix A=(aij) is said to be consistent and its 
principal eigenvalue is equal to n. Otherwise, it is simply reciprocal. The 
general eigenvalue formulation given in (2.1) is obtained by perturbation of 
the following consistent formulation: 

Al An 

Al 

wl ~ 

[}{}nw wl wn (2.2) 
Aw= : 

An 
Wn Wn 
WI Wn 

where A has been multiplied on the right by the transpose of the vector of 
weights w=(w], .... wn). The result of this multiplication is nw. Thus, to 
recover the scale from the matrix of ratios, one must solve the problem 
Aw=nw or (A-nI)w = O. This is a system of homogeneous linear equations. 
It has a nontrivial solution if and only if the determinant of A-nI vanishes, 
that is, n is an eigenvalue of A. Now A has unit rank since every row is a 
constant multiple of the first row. Thus, all its eigenvalues except one are 
zero. The sum of the eigenvalues of a matrix is equal to its trace, that is, the 
sum of its diagonal elements. In this case, the trace of A is equal to n. Thus 
n is an eigenvalue of A, and one has a nontrivial solution. The solution 
consists of positive entries and is unique to within a multiplicative constant. 

The discrete formulation given in (2.1) above generalises to the 
continuous case through Fredholm's integral equation of the second kind and 
is given by: 

b b 

f K(s, t)w(t)dt = Amax wes), f w(s)ds = 1 (2.3) 
a Il 
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where instead of the matrix A we have as a positive kernei, K(s,t) > O. Note 
that the entries in a matrix A depend on the two variables i andj which 
assume discrete values. Thus, the matrix itself depends on these discrete 
variables, and its generalisation, the kernel function, also depends on two 
(continuous) variables. The reason for calling it a kernel is the role it plays 
in the integral, where we cannot determine the exact form of the solution 
without knowing the kernel. The standard reciprocal form of (2.3) is written 
by moving the eigenvalue to the left hand side. As in the finite case, we 
have the reciprocal property and the consistency relation (2.4). 

{
K(S, t)KU, s) = 1 

K(s,t)K(t,u) = K(s,u) VS,t,u 
(2.4) 

An example of this type of kernel is K(s,t)=es-t=es/et. It follows by 
putting s=t=u, that K(s,s)= 1 for all s which is analogous to having ones 
down the diagonal of the matrix in the discrete case. A value of A, for which 
Fredholm's equation has a nonzero solution w(t) is called a characteristic 
value (or its reciprocal is called an eigenvalue) and the corresponding 
solution is called an eigenfunction. An eigenfunction is determined to 
within a multiplicative constant. If w(t) is an eigenfunction corresponding to 
the characteristic value A, and if C is an arbitrary constant, we can easily see 
by substituting in the equation that Cw (t) is also an eigenfunction 
corresponding to the same A. The value A,=O is not a characteristic value 
because we have the corresponding solution w(t)=O for every value of t, 
which is the trivial case, excluded in OUf discussion. 

A matrix is consistent if and only if it has the form A=(w/wj) which is 
equivalent to multiplying a column vector that is the transpose of (Wj, ... , wn) 

by the row vector (l/w], ... , lIw,J. As we see below, the kerne I K(s,t) is 
separable and can be written as 

(2.5) 

Theorem K(s, t) is consistent if and only if it is separable of the form: 

K(s, t) = k(s) / k(t) (2.6) 

Theorem 1f K(s, t) is consistent, the solution of (2.3) is given by 

wes) = k(s) 
f k(s)ds 

(2.7) 

s 
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In the discrete case, the normalised eigenvector is independent of 
whether all the elements of the pairwise comparison matrix Aare multiplied 
by the same constant a or not, and thus we can replace A by aA and obtain 
the same eigenvector. Generalising this result we have: 

K(as, at) = aK(s, t) = k(as) / k(at) = ak(s) / k(t) (2.8) 

which me ans that K is a homogeneous function of order one. In general, 
whenj(ax], ... , axn)=anj(x], ... , xn) holds,fis said to be homogeneous of order 
n. Because K is adegenerate kernei, we can replace k(s) above by k(as) and 
obtain w(as). We have now derived from considerations of ratio scales the 
following condition to be satisfied by a ratio scale: 

Theorem A necessary and sufficient condition for w(s) to be an 
eigenfunction solution ofFredholm 's equation ofthe second kind, with a 
consistent kernel that is homogeneous of order one, is that it satisfo the 
functional equation 

w(as) = bw(s), where b = (Xf1. (2.9) 

We have for the general damped periodic response function wes), 

wes) = Ceog b loga P --I ('OgS] (lOgS) 
log a (2.10) 

where P is periodic of period 1 and P(O)= 1. 
We can write this solution as 

(2.11) 

where P(u) is periodic of period 1, u=log sllog a and log ab=-ß, ß> O. It is 
interesting to observe the 10garithmic function appear as part of the solution. 
It gives greater eonfirmation to the Weber-Feclmer law developed in the next 
seetion. 

3. PAIRED COMPARISONS AND THE 
FUNDAMENTALSCALE 

Instead of assigning two numbers w, and Wj and forming the ratio w,lwj 

we assign a single number drawn from the fundamental 1-9 scale of absolute 
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numbers to represent the ratio (w;/Wj)/l. It is a nearest integer approximation 
to the ratio w;lwj. The derived scale will reveal what the Wi and Wj are. This 
is a central fact about the relative measurement approach of the AHP and the 
need for a fundamental scale. 

In 1846, Weber found, for example, that people holding different weights 
in their hand, could distinguish between a weight of 20 g and a weight of 21 
g, but could not if the second weight is only 20.5 g. On the other hand, 
while they could not distinguish between 40 g and 41 g, they could between 
40 g and 42 g, and so on at higher levels. We need to increase a stimulus s 
by a minimum amount & to reach a point where our senses can first 
discriminate between s and s+~s. The amount ~s is called the just 
noticeable difference Und). The ratio r=~s/s does not depend on s. Weber's 
law states that change in sensation is noticed when the stimulus is increased 
by a constant percentage of the stimulus itself. This law holds in ranges 
where & is small when compared with s, and henee in praetiee it fails to 
hold when s is either too small or too large. Aggregating or deeomposing 
stimuli as needed into clusters or hierarehy levels is an effective way to 
extend the use of this law. 

In 1860, Feehner considered a sequence of just noticeable inereasing 
stimuli. He denotes the first one by So. The next just noticeable stimulus is 
given by 

(3.1) 

based on Weber's law. Similarly, 

(3.2) 

In general, 

(3.3) 

Thus, stimuli of noticeable differences follow sequentially in a geometrie 
progression. Fechner noted that the corresponding sensations should follow 
eaeh other in an arithmetic sequenee at the discrete points at whieh just 
noticeable differences oecur. However, the latter are obtained when we 
solve for n. We have 

(3.4) 
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and sensation is a linear function of the logarithm of the stimulus. Thus, if 
M denotes the sensation and S the stimulus, the psychophysical law of 
Weber-Fechner is given by 

M = a log s + b, a * O. (3.5) 

We assume that the stimuli arise in making pairwise comparisons of 
relatively comparable activities. We are interested in responses whose 
numerical values are in the form of ratios. Thus b=O, from which we must 
have log so=O or so= 1, which is possible by calibrating a unit stimulus. Here 
the unit stimulus is So. The next noticeable stimulus is Si = soa = a which 
yields the second noticeable response a(loga). The third noticeable stimulus 
is S2=SO« which yields a response of 2a(loga). Thus, we have for the 
different responses: 

Mo = a log so' Mi = a log a, M2 = 2a log a, ... , Mn = na log a. (3.6) 

While the noticeable ratio stimulus increases geometrically, the response 
to that stimulus increases arithmetically. Note that Mo=O and there is no 
response. By dividing each Mi by MI we obtain the sequence of absolute 
numbers 1, 2, 3, ... of the fundamental 1-9 scale. Paired comparisons are 
made by identifying the less dominant of two elements and using it as the 
unit of measurement. One then determines, using the scale 1-9 or its verbal 
equivalent, how many times more the dominant member of the pair is than 
this unit. In making paired comparisons, we use the nearest integer 
approximation from the scale, relying on the insensitivity of the eigenvector 
to small perturbations (discussed below). The reciprocal value is then 
automatically used for the comparison of the less dominant element with the 
more dominant one. Despite the foregoing derivation of the scale in the 
form of integers, someone might think that other sc ale values would be 
better, for example using l.3 in the place of 2. Imagine comparing the 
magnitude of two people with respect to the magnitude of one person and 
using l.3 for how many instead of2. 

We note that there may be elements that are eloser than 2 on the 1-9 
scale, and we need a variant of the foregoing. Among the elements that are 
elose, we select the smallest. Observe the incremental increases between 
that smallest one and the rest of the elements in the elose group. We now 
consider these increments to be new elements and pairwise compare them on 
the scale 1-9. If two of the increments are themselves eloser than 2 we treat 
them as identical, assigning a 1 (we could carry this on ad infinitum). In the 
end, each component of the eigenvector of comparisons for the increments is 
added to unity to yield the un-normalised priorities of the elose elements for 
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that criterion. Note that only the least of these dose elements is used in 
comparisons with the other elements that can be compared direct1y using the 
normal 1-9 scale. Its priority is used to multiply the priorities of these dose 
elements and finally the priorities of all the elements are re-normalised. 

How large should the upper value ofthe scale be? Qualitatively, people 
have a capacity to divide their response to stimuli into three categories: high, 
medium and low. They also have the capacity to refine this division by 
further subdividing each of these intensities of responses into high, medium 
and low, thus yielding in all nine subdivisions. It turns out, from the 
requirement of homogeneity developed below, that to maintain stability (and 
limit inconsistency), our minds work with a few elements at a time. 

4. SENSITIVITY OF THE PRINCIPAL 
EIGENVECTOR 

To a first order approximation, perturbation ~Wl in the principal 
eigenvector Wl from perturbation ~A in the consistent matrix Ais given by: 

n 

~Wl = L {vJ ~AWJ(AI - A,)VJ Wj)w j 
j=2 

(4.1) 

The eigenvector Wl is insensitive to perturbation in A, if the principal 
eigenvalue }q is separated [fom the other eigenvalues At, here assumed to be 
distinct, and none of the products V/Wj of left and right eigenvectors is 
small. We should recall that the nonprincipal eigenvectors need not be 
positive in all components, and they may be complex. One can show that all 
the v/Wj are of the same order, and that v/Wj, the product of the normalised 
left and right principal eigenvectors, is equal to n. If n is relatively small and 
the elements being compared are homogeneous, none of the components of 
W I is arbitrarily small and correspondingly, none of the components of v I T is 
arbitrarily small. Their product cannot be arbitrarily smalI, and thus W is 
insensitive to sm all perturbations of the consistent matrix A. The condusion 
is that n must be smalI, and one must compare homogeneous elements. 

5. CLUSTERING TO EXTEND THE SCALE FROM 
1-9 TO 1-00 

In Figure 1, an unripe cherry tomato is eventually and indirect1y 
compared with a large watermeIon by first comparing it with a small tomato 
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and a lime, the lime is then used again in a second cluster with a grapefruit 
and a honey dew where we then divide by the weight of the lime and then 
multiply by its weight in the first cluster, and then use the honey dew again 
in a third cluster and so on. In the end we have a comparison of the unripe 
cherry tomato with the large watermeion and would accordingly extended 
the scale from 1-9 to 1-721. 

0 .07 (!) .28 0 .65 

Unripe Cherry Tomato Sma" Green Tomato Urne 

0 .08 0 .22 0 .70 

Urne Grapefruit Honeydew 

.08 = / .22 = 2.75 .70 = 8.75 

.08 .08 .08 

.65 x 1 = .65 .65 x 2.75=1 .79 .65 x 8.75 = 5.69 

~ ~ 0 ~ =.. .:::.=--
.10 .30 ~ • ..... ~ .60 

Honeydew Sugar Baby Walennelon Oblong Wa/etme/on 

. /0 = J .30 = 3 .60 =6 

. / 0 .10 .10 
5.69 x 1 = 5.69 5.69 x 3 = 17.07 5.69 x 6 = 34.14 

This means lhal34.14/.07= 487.7 unrioe chenv 10maloes are eQuall0 lhe oblong walermelon. 

Figure 1. Comparisons according to volume. 

Such clustering is essential, and must be done separately for each 
criterion. We should note that in most decision problems, there may be one 
or two levels of clusters and conceivably it may go up to three or four 
adjacent ranges of homogeneous elements (Maslow put them in seven 
groupings). Very roughly we have in decreasing order of importance: (1) 
survival, health, family, friends and basic religious beliefs some people were 
known to die for; (2) career, education, productivity and lifestyle; (3) 
political and social beliefs and contributions; (4) beliefs, ideas, and things 
that are flexible and it does not matter exactly how one advocates or uses 
them. These categories can be generalised to a group, a corporation, or a 
government. For very important decisions, two categories may need to be 
considered. Note that the priorities in two adjacent categories would be 
sufficiently different, one being an order of magnitude sm aller than the 
other, that in the synthesis, the priorities of the elements in the smaller set 
have little effect on the decision. We do not have space to show how so me 
undesirable elements can be compared among themselves and gradually 
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extended to compare them with desirable ones as above. Thus one can go 
from negatives to positives but keep the measurement of the two types 
positive, by eventually clustering them separately. 

6. SYNTHESIS: HOW TO COMBINE TANGIBLES 
WITH INTANGIBLES - ADDITIVE VS 
MULTIPLICATIVE 

Let H be a complete hierarchy with h levels. Let Bk be the priority matrix 
of the kth level, k=2, ... ,h. If W' is the global priority vector of the pth level 
with respect to some element z in the (p-l )st level, then the priority vector W 
of the qth level (p<q) with respect to z is given by the multilinear (and thus 
nonlinear) form, 

(6.1) 

The global priority vector of the lowest level with respect to the goal is given 
by, 

(6.2) 

In general, W' equals 1. The sensitivity of the bottom level alternatives 
with respect to changes in the weights of elements in any level can be 
studied by means of this multilinear form. 

Assurne that a family is considering buying a house and there are three 
houses to consider A, B, and C. Four factors dominate their thinking: house 
price, remodelling costs, house size as reflected by its footage, and style of 
the house, which is an intangible. They have looked at three houses with 
numerical data shown below on the quantifiables (Figure 2). 

Choosing the Best House 

I 

Price Remodeling Size Style 
($1000) Costs ($300) (sq. ft.) 

A 200 150 3COO Colonial 
B 300 50 2000 Ranch 
C 500 100 5500 Split Level 

Figure 2. Ranking houses on four criteria. 
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If we add the costs on price and modelling and normalise we obtain 
respectively (A,B,C)=(.269,.269,.462). Now let us see what is needed for 
nonnalisation to yield the same result. First, we normalise for each of the 
quantifiable factors. Then we must normalise the factors measured with 
respect to a single scale (Figure 3). 

Choosing the Best House 

I 

Price Remodeling Size Style 
(1000/1300) Costs (300/1300) (sq. ft.) 

A 200/1000 150/300 3000 Colonial 
B 300/1000 50/300 2000 Ranch 
C 500/1000 100/300 5500 Split Level 

Figure 3. Nonnalising the measurements. 

Here we leam two important lessons to be used in the general approach. 
Nonnalising the alternatives for the two criteria involving money in tenns of 
the money involved on both criteria leads to relative weights of importance 
for the criteria. Here for example Price is in the ratio of about three to one 
when compared with Remodelling Cost and when compared with the latter 
with respect to the goal of choosing the best house, it is likely to be assigned 
the value "moderate" which is nearly three times more as indicated by the 
measurements. Here the criteria Price and Remodelling Cost derive their 
priorities only from the alternatives because they are equally important 
factors, although they can also acquire priorities from higher level criteria as 
to their functional importance with respect to the ease and availability of 
different amounts of money. We now combine the two factors with a 
common scale by weighting and adding (Figure 4). 

Choosing the Best House 

I 

Economic Factors Size 
(combining Price and 

Additive Multiplicative (sq. ft.) Style 
Remodeling Cost) Synthesis Synthesis 

A 350/1300 .269 .256 3000/10500 Colonial 
B 350/1300 .269 .272 2000/10500 Ranch 
C 600/1300 .462 .472 5500/10500 Split Level 

Figure 4. Combining the two costs through additive or multiplicative syntheses. 
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The left column and its decimal values in the second column give the 
exact value of the normalised dollars spent on each house obtained by 
additive synthesis (weighting and adding). By aggregating the two factor 
measured with dollars into a single factor, one then makes the decision as to 
which house to buy by comparing the three criteria as to their importance 
with respect to the goal. 

The second lesson is that when the criteria have different measurements, 
their importance cannot be determined from the bottom up through 
measurement of the alternatives, but from the top down, in terms of the goal. 
The same process of comparison of the criteria with respect to the goal is 
applied to all criteria if, despite the presence of a physical scale, they are 
assumed to be measurable on different scales as they might when actual 
values are unavailable or when it is thought that such measurement does not 
reflect the relative importance of the alternatives with respect to the given 
critcrion. Imagine that no physical scale of any kind is known! We might 
note in passing that the outcome of this process of comparison with respect 
to higher level criteria yields meaningful (not arbitrary) results as noted by 
two distinguished proponents of multi-attribute value theory (MA VT) Buede 
and Maxwell (1995), who wrote about their own experiments in decision 
making: 

These experiments demonstrated that the MA VT and AHP techniques, 
when provided with the same decision outcome data, very often identify the 
same alternatives as 'best'. The other techniques are noticeably less 
consistent with MA VT, the fuzzy algorithm being the least consistent. 

Multiplicative synthesis, as in the third column of numbers above, done 
by raising each number in the two columns in the previous table to the power 
of its criterion measured in the relative total dollars under it, multiplying the 
two outcomes for each alternative and normalising, does not yield the exact 
answer obtained by adding dollars! In addition, A and B should have the 
same value, but they do not with multiplicative synthesis. The multiplicative 
"solution" devised for the fallacy of always preserving rank and avoiding 
inconsistency fails, because it violates the most basic of several requirements 
mentioned in the introduction to this chapter. 

Multiplicative and additive syntheses are related analytically through 
approximation. If we denote by ai the priority of the ith criterion, i= 1, .. . ,n, 
and by Xi, the priority of alternative X with respect to the ith criterion, then 

I1 Xiai = exp log I1 xt i = exp (},)og Xiai )= exp (Lai log Xi) 

= 1+(Lai logxi ) (6.3) 

= 1+ L(aixi -aJ= Laixi 
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If desired, one can include a remainder term to estimate the error. With 
regard to additive and multiplicative syntheses being close, one may think 
that in the end it does not matter which one is used, but it does. Saaty and 
Hu (1998) have shown that despite such closeness on every matrix of 
consistent judgements in adecision, the synthesised outcomes by the two 
methods not only lead to different final priorities (which can cause a faulty 
allocation of resources) but more significantly to different rankings of the 
alternatives. For all these problems, but more significantly because it does 
not generalise to dependence and feedback even with consistency 
guaranteed, and because of the additive nature of matrix multiplication 
needed to compute feedback in network circuits to extend the AHP to the 
ANP, I do not recommend ever using multiplicative synthesis. It can lead to 
an undesirable ranking of the alternatives of adecision. 

7. RANK PRESERVATION AND REVERSAL 

7.1 Theoretical and Practical Issues 

Given the assumption that the alternatives of adecision are completely 
independent of one another, can and should the introduction (deletion) of 
new (old) alternatives change the rank of some alternatives without 
introducing new (deleting old) criteria, so that a less preferred alternative 
becomes most preferred? Incidentally, how one prioritises the criteria and 
subcriteria is even more important than how one does the alternatives which 
are themselves composites of criteria. Can rank reverse among the criteria 
themselves if new criteria are introduced? Why should that not be as critical 
a concern? The answer is simple. In its original form utility theory assumed 
that criteria could not be weighted and the only important elements in a 
decision were the alternatives and their utilities under the various criteria. 
Today, utility theorists imitate the AHP by rating, and some even by 
comparing the criteria, somehow. There was no concern then about what 
would happen to the ranks of the alternatives should the criteria weights 
themselves change as there were none. The tendency, even today, is to be 
unconcerned about the theory of rank preservation and revers al among the 
criteria themselves. 

The house example of the previous section teaches us an important 
lesson. If we add a fourth house to the collection, the priority weights of the 
criteria Price and Remodelling Cost would change accordingly. Thus the 
measurements of the alternatives and their number which we call structural 
factors, always affect the importance of the criteria. When the criteria are 
incommensurate and their functional priorities are determined in terms of yet 
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higher level criteria or goals, one must still weight such functional 
importance of the criteria by the structural effect of the alternatives. What is 
significant in aB this is that the importance of the criteria always depends on 
the measurements of the alternatives. If we assume that the alternatives are 
measured on a different scale for each criterion, it becomes obvious that 
normalisation is the instrument that provides the structural effect to update 
the importance of the criteria in terms of what alternatives there are. Finally, 
the priorities of the alternatives are weighted by the priorities of the criteria 
that depend on the measurements of the alternatives. This implies that the 
overall ranking of any alternative depends on the measurement and number 
of all the alternatives. To always preserve rank means that the priorities of 
the criteria should not depend on the measurements of the alternatives but 
should only derive from their own functional importance with respect to 
higher goals. This implies that the alternatives should not depend on the 
measurements of other alternatives. Thus, one way to always preserve rank 
is to rate the alternatives one at a time. In the AHP, this is done through 
absolute measurernent with respect to a complete set of intensity ranges 
with the largest value intensity value equal to one. It is also possible to 
preserve rank in relative measurement by using an ideal alternative with full 
value of one for each criterion. 

The logic about what can or should happen to rank when the alternatives 
depend on each other has always been that anything can happen. Thus, 
when the criteria functionally depend on the alternatives, which implies that 
the alternatives, which of course depend on the criteria, would then depend 
on the alternatives themselves, rank may be allowed to reverse. The 
Analytic Network Process (ANP) is the generalisation of the AHP to deal 
with ranking alternatives when there is functional dependence and feedback 
of any kind. Even here, one can have adecision problem with dependence 
among the criteria, but with no dependence of criteria on alternatives and 
rank may still need to be preserved. The ANP takes care of functional 
dependence, but if the criteria do not depend on the alternatives, the latter are 
kept out of the supermatrix and ranked precisely as in a hierarchy (Saaty 
1996). 

Examples of rank reversal abound in practice, and they do not occur 
because new criteria are introduced. The requirement that rank always be 
preserved or that it should be preserved with respect to irrelevant alternatives 
is not universally accepted. To every rule or generalisation that one may 
wish to set down about rank, it is possible to find a counterexample that 
violates that rule. Here is the last and most extreme form of four variants of 
an attempt to qualify what should happen to rank given by Luce and Raiffa 
(1957), each of which is followed by a counterexample. They state it but 
and then reject it. The addition of new aets to adeeision problem under 
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uncertainty never changes old, originally non-optimal acts into optimal 
ones. The all-or-none feature of the last form may seem a bit too stringent ... 
a severe criticism is that it yields unreasonable results. The AHP has a 
theory and implementation procedures and guidelines for when to preserve 
rank and when to allow it to reverse. One mode of the AHP allows an 
irrelevant alternative to cause reversal among the ranks of the original 
alternatives. 

7.2 Selecting the Distributive or Ideal Mode 

The distributive mode of the AHP produces preference scores by 
normalising the performance scores; it takes the performance score received 
by each alternative and divides it by the sum of performance scores of all 
alternatives under that criterion. This means that with the Distributive mode 
the preference for any given alternative would go up if we reduce the 
performance score of another alternative or remove some alternatives. The 
Ideal mode compares each performance score to a fixed benchmark such as 
the performance of the best alternative under that criterion. This means that 
with the Ideal mode the preference for any given alternative is independent 
of the performance of other alternatives, except for the alternative selected as 
a benchmark. Saaty and Vargas (1993) have shown by using simulation, 
that there are only minor differences produced by the two synthesis modes. 
This means that the decision should select one or the other if the results 
diverge beyond a given set of acceptable data. 

The following guidelines were developed by Millet and Saaty (1999) to 
reflect the core differences in translating performance measures to 
preference measures of alternatives. The Distributive (dominance) synthesis 
mode should be used when the decision maker is concerned with the extent 
to which each alternative dominates all other alternatives under the 
criterion. The Ideal (performance) synthesis mode should be used when the 
decision maker is concerned with how weil each alternative pertorms 
relative to a jixed benchmark. In order for dominance to be an issue, the 
decision maker should regard inferior alternatives as relevant even after the 
ranking process is completed. This suggests a simple test for the use of the 
Distributive mode: if the decision maker indicates that the preference for a 
top ranked alternative under a given criterion would improve if the 
performance of any lower ranked alternative was adjusted downward, then 
one should use the Distributive synthesis mode. To make this test more 
actionable we can ask the decision maker to imagine the amount of money 
he or she would be willing to pay for the top ranked alternative. If the 
decision maker would be willing to pay more for a top ranked alternative 
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after learning that the performance of one of the lower-ranked alternatives 
was adjusted downward, then the Distributive mode should be used. 

Consider selecting a car: Two different decision makers may approach 
the same problem from two different points of views even if the criteria and 
standards are the same. The one who is interested in "getting a weIl 
performing car" should use the Ideal mode. The one who is interested in 
"getting a car that stands out" among the alternatives purchased by 
co-workers or neighbours, should use the Distributive mode. 

8. GROUP DECISION MAKING 

Here we consider two issues in group decision making. The first is how 
to aggregate individual judgements, and the second is how to construct a 
group choice from individual choices. 

8.1 How to Aggregate Individual Judgements 

Let the functionj(x], X2, ... , xn) for synthesising the judgements given by 
n judges, satisfy the following conditions: 

1. Separability condition (S): j(x], X2, ... , xn)=g(X])g(X2) ... g(xn) for an x], X2, 
... , X n in an interval P of positive numbers, where g is a function mapping 
P onto a proper interval J and is a continuous, associative and 
cancellative operation. reS) me ans that the influences ofthe individual 
judgements can be separated as above.] 

2. Unanimity condition (U): j(x, x, ... , x)=x for an x in P. [CU) means that if 
an individuals give the same judgement x, that judgement should also be 
the synthesised judgement.] 

3. Homogeneity condition (H): j(ux], UX2, ... , uxn)=uj(x] , X2, ... , xn) where 
u>O and Xk, UXk (k= 1, 2, ... , n) are all in P. [For ratio judgements (H) 
me ans that if all individuals judge a ratio U times as large as another ratio, 
then the synthesised judgement should also be u times as large.] 

4. Powerconditions(Pt): j(X]t,X2t, ... ,xnt)=f t(X],X2, ... ,xn). [(P2),for 
example, means that if the kth individual judges the length of a side of a 
square to be Xk, the synthesised judgement on the area of that square will 
be given by the square of the synthesised judgement on the length of its 
side.] 

Special case (R=P-d: j(lIx], 1/x2, ... , lIxn)=Iij{x], X2, ... , xn). [(R) is of 
particular importance in ratio judgements. It means that the synthesised 
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value of the reciprocal of the individual judgements should be the reciprocal 
of the synthesised value of the original judgements.] 

Aczel and Saaty (see Saaty 1990 and Saaty 1994) proved the following 
theorem: 

Theorem The general separable (S) synthesising funetions satisfYing the 
unanimity (U) and homogeneity (H) eonditions are the geometrie mean 
and the root-mean-power. Moreover, if the reeiproeal property (R) is 
assumed even for a single n-tuple (XI, X2, ... , x,J of the judgements 01 n 
individuals, where not all Xk are equal, then only the geometrie mean 
satisjies all the above eonditions. 

In any rational consensus, those who know more should, accordingly, 
influence the consensus more strongly than those who are less 
knowledgeable. Some people are clearly wiser and more sensible in such 
matters than others, others may be more powerful and their opinions should 
be given appropriately greater weight. For such une qual importance of 
voters, not all g's in (S) are the same function. In place of (S), the weighted 
separability property (WS) is now: fiXI, X2, ... , Xn)=gl(XI)g2(X2) ... gn(xn). 
[(WS) implies that not all judging individuals have the same weight when 
the judgements are synthesised and the different influences are reflected in 
the different functions (gl , g2, ... , gn).] 

In this situation, Aczel and Aisina (see Saaty 1994) proved the following 
theorem: 

Theorem The general weighted-separable (WS) synthesising lunetions 
with the unanimity (U) and homogeneity (H) properties are the weighted 
geometrie mean 

f (x X X ) - X q, X q, '" X q. 
I' 2"'" n - I 2 n (8.1) 

and the weighted root-mean-powers 

(8.2) 

where ql+q2+ ... +qn=1, qk>O (k=1,2, ... ,n), "(>0, but otherwise ql, q2, ... , 
qn, rare arbitrary eonstants. 

If I also has the reciprocal property (R) and for a single set of entries (XI, 
h ... , xn) of judgements of n individuals, where not all Xk are equal, then 
only the weighted geometrie mean applies. We give the following theorem 
which is an explicit statement of the synthesis problem that follows from the 
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previous results, and applies to the second and third cases of the 
detenninistic approach: 

Theorem 1f xi') .... , x~!) i= l ..... m are rankings of n alternatives by m 
independent judges and if ai is the importance ofjudge i developed from 
a hierarchy for evaluating the judges. and hence 

m 

~ a· =1 L-J' , (8.3) 
i=1 

then 

( )
l/m ( ) 11m fi X;i , ... , fi X~i 

,=1 ,=1 

(8.4) 

are the combined ranks of the alternatives for the m judges. 

The power or priority of judge i is simply a replication of the judgement 
of that judge (as if there are as many other judges as indicated by hislher 
power ai), which implies multiplying hislher ratio by itself ai times, and the 
result follows. 

The first requires knowledge how weH a particular alternative performs 
and how weH it compares with a standard or benchmark. The second 
requires comparison with the other alternatives to detennine its importance. 

8.2 On the Construction of Group Choice from 
Individual Choices 

Given a group of individuals, a set of alternatives (with cardinality 
greater than 2), and individual ordinal preferences für the alternatives, Arrow 
proved with his Impossibility Theorem that it is impossible to derive a 
rational group choice (construct a social choice function that aggregates 
individual preferences) from ordinal preferences of the individuals that 
satisty the foHowing four conditions, i.e., at least one of them is violated: 

1. Decisiveness: the aggregation procedure must generaHy produce a group 
order. 

2. Unanimity: if aH individuals prefer alternative A to alternative B, then the 
aggregation procedure must produce a group order indicating that the 
group prefers A to B. 
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3. Independence ofirrelevant alternatives: given two sets of alternatives 
which both include A and B, if all individuals prefer A to B in both sets, 
then the aggregation procedure must produce a group order indicating 
that the group, given any of the two sets of alternatives, prefers A to B. 

4. No dictator: no single individual preferences determine the group order. 

The main conclusion about group decision making, using the ratio scale 
approach of the AHP, is that it can be shown that because now individual 
preferences are cardinal rather than ordinal, it is possible to derive a rational 
group choice satisfying the above four conditions. It is possible because: (1) 
individual priority scales can always be derived from a set of pairwise 
cardinal preference judgements as long as they form at least a minimal 
spanning tree in the completely connected graph of the elements being 
compared and (2) the cardinal preference judgements associated with group 
choice belong to a ratio scale that represents the relative intensity of the 
group preferences. 

9. CONCLUSIONS 

The seven fundamental properties discussed above provide philosophical, 
mathematical, and practical bases for the AHP and its application. Of 
primary importance is the capability of the AHP to transform a 
multidimensional, multi-sc ale problem into one that is uni-dimenional over a 
single scale. This allows decision makers to combine vastly different criteria 
in a rational, context-preserving, and meaningful way. The use of paired 
comparisons in judgement matrices is intuitively understandable and is 
easily done in practice. Although calculating priority vectors from these 
matrices limits the number of elements that can be compared, this difficulty 
can be easily remedied by absolute rating. In addition, incommensurate 
element comparisons can be handled by hierarchical clustering that 
effectively expands the original 1-9 sc ale to 1-00. Either rank preservation or 
rank reversal can be accommodated, depending on the desires of the decision 
maker and the needs of the decision problem. Finally, cardinal ratio scale 
preferences permit one to include multiple decision makers in the process 
and to incorporate their individual judgements in a fair mann er that also 
reconciles their specialised knowledge, experience, and authority. 

Any formal decision process (e.g., the AHP, MAVT) tries to capture 
often ill-formed and complex problems using rational frameworks that 
appeal to our sense of intelligent decision making. Along the way, 
assumptions and simplification are made (both implicit and explicit) that 
make formal decision making practical and manageable. The fundamental 
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properties of the AHP are based on stimulus-response theory, rigorous 
mathematics, and practical necessities. By doing so, this process mitigates 
many of the limitations of less "grounded" methods while maintaining broad 
applicability . 
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